Abstract

A family of iron(II) carbonyl hydride species supported by PNP pincer ligands was identified as highly productive catalysts for the N-formylation of amines via CO2 hydrogenation. Specifically, iron complexes supported by two different types of PNP ligands were examined for formamide production. Complexes containing a PNP ligand with a tertiary amine afforded superior turnover numbers in comparison to complexes containing a bifunctional PNP ligand with a secondary amine, indicating that bifunctional motifs are not required for catalysis. Systems incorporating a tertiary amine containing a PNP ligand were active for the N-formylation of a variety of amine substrates, achieving TONs up to 8900 and conversions as high as 92%. Mechanistic experiments suggest that N-formylation occurs via an initial, reversible reduction of CO2 to ammonium formate followed by dehydration to produce formamide. Several intermediates relevant to this reaction pathway, as well as iron-containing deactivation species, were isolated ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call