Abstract

Selective hydrogenolysis of biomass-derived furfuryl alcohol (FFA) to 1,5- and 1,2-pentanediol (PeD) was conducted over Cu-LaCoO3 catalysts with different Cu loadings; the catalysts were derived from perovskite structures prepared by a one-step citrate complexing method. The catalytic performances of the Cu-LaCoO3 catalysts were found to depend on the Cu loading and pretreatment conditions. The catalyst with 10 wt% Cu loading exhibited the best catalytic performance after prereduction in 5%H2-95%N2, achieving a high FFA conversion of 100% and selectivity of 55.5% for 1,5-pentanediol (40.3%) and 1,2-pentanediol (15.2%) at 413 K and 6 MPa H2. This catalyst could be reused four times without a loss of FFA conversion but it resulted in a slight decrease in pentanediol selectivity. Correlation between the structural changes in the catalysts at different states and the simultaneous variation in the catalytic performance revealed that cooperative catalysis between Cu0 and CoO promoted the hydrogenolysis of FFA to PeDs, especially to 1,5-PeD, while Co0 promoted the hydrogenation of FFA to tetrahydrofurfuryl alcohol (THFA). Therefore, it is suggested that a synergetic effect between balanced Cu0 and CoO sites plays a critical role in achieving a high yield of PeDs with a high 1,5-/1,2-pentanediol selectivity ratio during FFA hydrogenolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call