Abstract

The gas-phase selective hydrogenation of phenol to cyclohexanone has been investigated over supported Pd catalysts in order to clarify the role of the support, the Pd precursor and the addition of Ca in controlling activity, selectivity and stability of the catalytic system. The catalytic results showed that over monometallic Pd catalysts prepared by PdCl 2 as precursor the order of activity and selectivity to cyclohexanone was the following: Pd/La 2O 3>Pd/CeO 2>Pd/Al 2O 3. The same order of activity was observed over ex-Pd(CH 3COO) 2 catalysts. However, over these latter samples the selectivity to cyclohexanone was very high regardless of the support used. Addition of calcium strongly improved the catalytic performance of both ex-chloride and ex-acetate Pd catalysts supported on alumina, whereas no significant improvement was observed on Pd catalysts supported on CeO 2 and La 2O 3. On the basis of characterization data (CO chemisorption, TPD and FT-IR) reported in this paper it has been suggested that the acid–base properties of supported Pd catalysts strongly influence the adsorption–desorption equilibrium of the reactant and products, being responsible for directing the selectivity to the reaction products. The catalytic activity of the system appears to be, instead, mainly controlled by the palladium sites on which hydrogen is activated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.