Abstract

The selective oxidation of methane to value-added C1 chemicals (e.g., HCHO and CO) is a crucial process in the chemical industry. Recent studies indicate that the generation of highly dispersed isolated active sites is crucial for improving the performance in the selective oxidation of methane and studying the corresponding structure–activity relationship. Therefore, we used mesoporous silica nanoparticles (MSN) as supports and utilized grafting method to prepare catalysts with more selective oxidation active centers (isolated VO4). The study found that isolated VO4 centers are the active sites for the selective oxidation of methane to formaldehyde, and CO is the product of further oxidation of formaldehyde. The total selectivity of formaldehyde and CO on all catalysts is higher than 83.6 %. Among them, the highly dispersed and isolated VO4 tetrahedral active centers on the 2 V/MSN catalyst could stably convert methane to formaldehyde, achieving the highest formaldehyde yield of 3.7 % at 670 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.