Abstract

Boron nitride nanotubes (BNNTs) were selectively synthesized on patterned bilayer (Fe/Al) catalysts by the plasma-assisted chemical vapor deposition (PACVD) method. The as-grown nanotubes comprise both coaxial and cup-stacking tubular structures. Optical transitions on cup-stacking BNNTs are investigated for the first time. The observed red-shift of free excitonic luminescence was attributed to the excitonic recombination in terms of defect trapping in the tube's surface. The O 2 additives during the synthetic process were found to balance the excess H radicals that in turn enhance the growth yield of BNNTs. Moreover, our elemental mapping results provide direct evidence of the metal catalytic mechanism and the influence of the as-formed Al 2 O 3 underlayer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.