Abstract

AbstractSingle photon emitters from atomic defects in crystals like hexagonal boron nitride (hBN) are vital for quantum technologies. Although various techniques are devised to obtain defects emission in hBN, simultaneous control over defects position, type, and emission spectrum has not been achieved yet. Here, ion implantation with 12C, 20Ne, and 69Ga are used to create a composite defects population with emission ≈820 nm. The correlation of Raman and photoluminescence (PL) spectroscopy helps to identify the defects’ type. After selecting Ga as the ion species yielding the maximum emitter brightness, a strategy based on thermal annealing is developed to modify the composition of the induced defects. This results in an emitter ensemble with selected spectral properties, even when starting from different implantation conditions. Specifically, thermal annealing induces a defect transmutation from one type to another, shifting the emission wavelength from 820 to 625 nm. Moreover, sample patterning is combined with focused ion beam implantation and subsequent annealing in an efficient method to deterministically set the defects position as well as the PL spectral composition. These results offer a practical avenue to achieve in situ positioning and tuning of ensembles of emitters in hBN, promising for quantum information and sensing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call