Abstract

Single-photon emitters play an essential role in quantum technologies, including quantum computing and quantum communications. Atomic defects in hexagonal boron nitride ( h-BN) have recently emerged as new room-temperature single-photon emitters in solid-state systems, but the development of scalable and tunable h-BN single-photon emitters requires external methods that can control the emission energy of individual defects. Here, by fabricating van der Waals heterostructures of h-BN and graphene, we demonstrate the electrical control of single-photon emission from atomic defects in h-BN via the Stark effect. By applying an out-of-plane electric field through graphene gates, we observed Stark shifts as large as 5.4 nm per GV/m. The Stark shift generated upon a vertical electric field suggests the existence of out-of-plane dipole moments associated with atomic defect emitters, which is supported by first-principles theoretical calculations. Furthermore, we found field-induced discrete modification and stabilization of emission intensity, which were reversibly controllable with an external electric field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.