Abstract

Ag nanoparticles have garnered significant attention for their excellent plasmonic properties and potential use as plasmonic cavities, primarily because of their intrinsically low ohmic losses and optical properties in the visible range. These are particularly crucial in systems involving quantum dots that absorb light at low wavelengths, where the need for a high threshold energy of interband transitions necessitates the incorporation of Ag nanostructures. However, the synthesis of Ag nanoparticles still encounters challenges in achieving structural uniformity and monodispersity, along with chemical stability, consequentially inducing inconsistent and poorly reliable optical responses. Here, we present a two-step approach for synthesizing highly uniform spherical Ag nanoparticles involving depletion-induced flocculation and Cu(II)-mediated oxidative etching. We found that the selective flocculation of multitwinned Ag nanocrystals significantly enhances the uniformity of the resulting Ag nanostructures, leaving behind only single-crystalline and single-twinned nanostructures. Subsequent oxidative etching, in which cupric ions are directly involved in the reaction, was designed based on Pourbaix diagrams to proceed following thermodynamically favorable states and circumvent the generation of reactive chemical species such as H2O2. This leads to perfectly spherical shapes of final Ag nanoparticles with a synthetic yield of 99.5% and additionally reduces the overall reaction time. Furthermore, we explore the potential applications of these monodisperse Ag nanospheres as uniform plasmonic cavities. The fabricated Ag nanosphere films uniformly enhanced the photoluminescence of InP/ZnSe/ZnS quantum dots, showcasing their capabilities in exhibiting consistent plasmonic responses across a large area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call