Abstract

A new technique was proposed to produce furfural (FF) through low-temperature fast pyrolysis of biomass impregnated with ZnCl2. Analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments were performed in this study to reveal the ZnCl2-catalyzed biomass pyrolysis and FF formation characteristics. The results revealed that the presence of ZnCl2 decreased the temperature for the complete decomposition of biomass, inhibited the devolatilization of lignin and pyrolytic ring scission of holocellulose. Meanwhile, it promoted the depolymerization and dehydration of holocellulose to form the FF and three anhydrosugars (levoglucosenone (LGO), 1-hydroxy-3,6-dioxabicyclo[3.2.1]octan-2-one (LAC) and 1,4:3,6-dianhydro-α-d-glucopyranose (DGP)) as the major primary pyrolytic products. With the increase of the ZnCl2 content, the three anhydrosugars were firstly increased and then decreased, while the FF was increased steadily. Moreover, these anhydrosugars could be converted to FF through the secondary catalysis by ZnCl2, leaving the FF as the predominant product. In addition, the acetic acid (AA), which was not inhibited by the ZnCl2, was formed as the only important liquid by-product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.