Abstract

Solid phosphoric acid (SPA) catalysts with different carriers were prepared and used for catalytic fast pyrolysis of poplar wood to produce levoglucosenone (LGO), a valuable anhydrosugar derivative that can be used in various organic synthesis applications. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments were performed to evaluate the catalytic capabilities of these catalysts under different reaction conditions. The results indicated that SPA catalyst prepared with the SBA-15 carrier exhibited the best catalytic capability for selectively producing LGO. Both the catalytic pyrolysis temperature and catalyst-to-biomass ratio affected the pyrolytic products greatly. The maximal LGO yield reached as high as 8.2 wt% from poplar wood, obtained at the pyrolysis temperature of 300 °C and the catalyst-to-biomass ratio of 1. The by-products during the catalytic pyrolysis process were mainly acetic acid (AA) and furfural (FF). In addition, the SPA catalyst possessed better catalytic capability than the liquid phosphoric acid (H3PO4) catalyst to produce LGO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.