Abstract
Selective epitaxial growth (SEG) of SiGe on patterned-oxide silicon substrates, using a tubular hot-wall low pressure chemical vapor deposition (LPCVD) system, has been demonstrated. This conventional LPCVD system was proposed as a low cost alternative for SiGe epitaxial growth. Dichlorosilane (SiH2Cl2) and germane (GeH4) were used as the reactant gases with hydrogen as a carrier gas, with no addition of HCl needed to achieve selectivity in quality epitaxial growth of SiGe. Nomarski microscopy showed good selectivity with no nucleation occurring on the SiO2 areas. A low defect silicon buffer layer grown under SEG conditions was key in obtaining high-quality growth. Cross-sectional transmission electron microscopy showed that the SiGe strained layers grown at 700 °C, 750 °C, and 800 °C were of high quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.