Abstract

To date the only known solution to avoid the unwanted electrochemical reduction of hypochlorite and chlorate in industrial chlorate production, performed in undivided cells, is the addition of dichromate to the chlorate electrolyte. Because of the toxicity of this compound its use is restricted within the European Union to time limited authorization by REACH. Therefore, an alternative to sodium dichromate is essential to maintain, or even increase the process efficiency.The addition of cerium (III) salts to a hypochlorite solution increases the cathodic selectivity towards hydrogen evolution (HER), the preferred cathode process in industrial chlorate production. This is attributed to the deposition of a thin cerium oxide/hydroxide coating on the cathode, induced by the increased local alkalinity during electrolysis.Performing the electrodeposition of such protective coating ex situ, well-controlled coating thickness can be achieved. Optimizing the deposition conditions (time, current density), a coherent and stable coating is formed on the electrode surface. On this protected electrode surface the electrochemical reduction of hypochlorite is suppressed by ca. 90% compared to the bare Pt electrode, while the HER proceeds with high selectivity and unchanged kinetics. Interestingly, other electrochemical reactions (O2 reduction, H2O2 reduction and oxidation) are also suppressed by the protective coating, suggesting that the deposited layer acts as an inorganic membrane on the electrode surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.