Abstract

The complex [Ru(Mebimpy)(4,4'-((HO)2OPCH2)2bpy)(OH2)](2+) surface bound to tin-doped indium oxide mesoporous nanoparticle film electrodes (nanoITO-Ru(II)(OH2)(2+)) is an electrocatalyst for the selective oxidation of methylrhenium trioxide (MTO) to methanol in acidic aqueous solution. Oxidative activation of the catalyst to nanoITO-Ru(IV)(OH)(3+) induces oxidation of MTO. The reaction is first order in MTO with rate saturation observed at [MTO] > 12 mM with a limiting rate constant of k = 25 s(-1). Methanol is formed selectively in 87% Faradaic yield in controlled potential electrolyses at 1.3 V vs NHE. At higher potentials, oxidation of MTO by nanoITO-Ru(V)(O)(3+) leads to multiple electrolysis products. The results of an electrochemical kinetics study point to a mechanism in which surface oxidation to nanoITO-Ru(IV)(OH)(3+) is followed by direct insertion into the rhenium-methyl bond of MTO with a detectable intermediate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.