Abstract
Heart diseases rank the top among the leading causes of death in the United States, and account for nearly 40% of all deaths 1. As the most important component of heart muscle, cardiac myocytes are the basic units to generate contractile forces and regulate heart function. There are extensive molecular and electrophysiological studies suggesting that the defective intercellular communication in cardiac myocytes is an underlying cause of left ventricular dysfunction in several heart diseases 2,3. However, there are limited evidences in terms of mechanical contractility and electromechanical transmission, which are the direct measures of intercellular communication in myocardium. This is largely due to the lack of appropriate tools that can quantitatively assess the mechanical performance of adult cardiac myocytes. In this study, a microengineered device is developed for quantitative assessment of cardiac mechanical performance in isolated adult myocytes. This device is capable of applying electrical stimulation to selected cardiac myocytes, measuring mechanical force generation in single cells, and examining intercellular mechanical transmission in longitudinally connected doublets of adult cardiac myocytes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have