Abstract

State transfer across discrete quantum networks is one of the elementary tasks of quantum information processing. Its aim is the faithful placement of information into a specific position in the network. However, all physical systems suffer from imperfections, which can severely limit the transfer fidelity. We present selective dynamical decoupling schemes which are capable of stabilizing imperfect quantum state transfer protocols on the model of a bent linear qubit chain. The efficiency of the schemes is tested and verified in numerical simulations on a number of realistic cases. The simulations demonstrate that these selective dynamical decoupling schemes are capable of suppressing unwanted errors in quantum state transfer protocols efficiently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.