Abstract

Vesicular glutamate transporters (VGLUTs) transport glutamate into synaptic vesicles prior to exocytotic release. The expression pattern of VGLUT2 and studies of genetically modified mice have revealed that VGLUT2 contributes to neuropathic pain. We previously showed that VGLUT2 is upregulated in supraspinal regions including the thalamus in mice following spared nerve injury (SNI), and blocking VGLUTs using the VGLUT inhibitor CSB6B attenuated mechanical allodynia. To further evaluate the role of VGLUT2 in neuropathic pain, in this study, we developed a lentiviral vector expressing small hairpin RNAs (shRNAs) against mouse VGLUT2, which was injected into the ventral posterolateral (VPL) nucleus of the thalamus in the presence or absence of SNI. The administration of VGLUT2 shRNAs result in downregulation of VGLUT2 mRNA and protein expression, and decreased extracellular glutamate release in primary cultured neurons. We also showed that VGLUT2 shRNAs attenuated SNI-induced mechanical allodynia, in accordance with knockdown of VGLUT2 in the VPL nucleus in mice. Accordingly, our study supports the essential role of supraspinal VGLUT2 in neuropathic pain in adult mice and, thereby, validates VGLUT2 as a potential target for neuropathic pain therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.