Abstract

Chrome-free metal tanning agent has been considered as eco-friendly in the leather industry. However, extensive crosslinking reactions of metal species on the leather surface restrain their uniform penetration into the hierarchical nanoscale leather matrix. Thus, masking agents with appropriate coordination ability are needed. Herein, the selective degradation of hemicellulose in corncob was achieved with 92.5% of conversion in an AlCl3–H2O system, obtaining oligosaccharides masking agent with high purity and leaving cellulose and lignin in the solid residue for other valuable use. Subsequently, H2O2 oxidation was performed to introduce –CHO/–COOH into oligosaccharides and reduce their molecular weights, thereby enhancing coordination ability and reducing ligand dimension. The post-oxidized reaction fluids together with additional Zr species were subjected to leather tanning, in which the oligosaccharides could coordinate with Al/Zr species and promote the penetration of metal species into the leather matrix. By controlling the hemicellulose degradation and oligosaccharide oxidation, an appropriate concentration of oligosaccharides with proper –CHO/–COOH contents allowed the efficient masking effect of the oligosaccharides. As a result, a uniform distribution of Al/Zr species was observed on the cross section, and 83.5 °C of shrinkage temperature was obtained for the chrome-free tanned leather.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.