Abstract

We present a novel membrane reactor (MR) concept for CO2 -hydrogenation to methanol application, in which CO2 is supplied from a CO2 -rich gas stream via a membrane and is distributed along the catalytic packed bed, where it reacts with hydrogen over a CuO-ZnO/Al2O3 catalyst to produce methanol. The performance of the reactor was investigated using a set of two-fluid model simulations. The simulation results showed that the fine distribution of CO2 improved the selectivity of methanol production by a value of 6 % for the studied range of the operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.