Abstract

Selective primary alcohol oxidation to form aldehydes products without overoxidation to carboxylic acids remains a key chemistry challenge. Using simple alkylammonium chloride as the electrolyte with a glassy carbon working electrode in neat ethanol solvent, 1,1-diethoxyethane (DEE) was prepared with >95% faradaic efficiency (FE). DEE serves as a storage platform protecting acetaldehyde from overoxidation and volatilization. UV-vis spectroscopy shows that the reaction proceeds through an ethyl hypochlorite intermediate as the sole chloride oxidation product, and that this intermediate decomposes unimolecularly (rate constant k = (6.896 ± 0.516) × 10-4 s-1) to form HCl catalyst and acetaldehyde, which undergoes rapid nucleophilic attack by ethanol solvent to form the DEE product. This indirect oxidation mechanism enables ethanol oxidation at much less positive potentials due to the fast kinetics for chloride anion oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call