Abstract

The rise in the temperature contributing to global warming is attributed to the increased human-generated greenhouse gas emission in the ambient atmosphere. In this paper, firstly, a comprehensive overview of the capture technologies is presented, highlighting the post-combustion capture technology as one of the promising CO2 mitigation strategies. The performance of activated carbon, amine-functionalized and metal-oxide impregnated materials prepared from renewable precursors as the acknowledged adsorbents are well assessed and presented systematically. Conversion of CO2 is proposed as a sustainable practice to substitute for dwindling fossil fuels. A strong emphasis is put on the conversion of CO2 into value-added chemicals like higher hydrocarbons via series of catalytic-hydrogenation reactions. The specific aim of this study is to assist researchers by providing a holistic overview of different aspects of carbon-based adsorbents for post-combustion capture instead of the current-state-of art technology and enhancing the pathways for CO2 valorization to clean and renewable end-products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call