Abstract

Superionic crystals exhibit ionic mobilities comparable to liquids while maintaining a periodic crystalline lattice. The atomic dynamics leading to large ionic mobility have long been debated. A central question is whether phonon quasiparticles—which conduct heat in regular solids—survive in the superionic state, where a large fraction of the system exhibits liquid-like behaviour. Here we present the results of energy- and momentum-resolved scattering studies combined with first-principles calculations and show that in the superionic phase of CuCrSe2, long-wavelength acoustic phonons capable of heat conduction remain largely intact, whereas specific phonon quasiparticles dominated by the Cu ions break down as a result of anharmonicity and disorder. The weak bonding and large anharmonicity of the Cu sublattice are present already in the normal ordered state, resulting in low thermal conductivity even below the superionic transition. These results demonstrate that anharmonic phonon dynamics are at the origin of low thermal conductivity and superionicity in this class of materials. Neutron and X-ray scattering studies combined with first-principles calculations suggest that the large, liquid-like ionic mobility in the canonical superionic crystal CuCrSe2 is due to anharmonic phonon dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.