Abstract
Development of the nanodevice that myosin-coated beads “walk” on actin filaments (F-actin) tracks for in vitro nanotransportation was hindered due to the difficulty of assembling large-area well-orientated F-actin tracks on the surface. In this work, we present a selective attachment of F-actin with controlled length on a patterned surface by employing biotinylated capped protein gelsolin as intermediate anchoring bridge. A patterned streptavidin layer was formed via coupling with a biotin layer that photo-actively attached to an amine-functionalized glass surface. The patterned film was found stable and homogenous compared to that obtained by microcontact printing method, according to the profiling with fluorescence microscopy. By a secondary blocking process, non-specific binding of F-actin to the patterned surface through electrostatic adsorption can be resisted. The length variation of F-actin as a function of gelsolin concentration was also investigated, implying that F-actin is appropriately of 2.5 μm in average length once F-actin/gelsolin molar ratio is 4:1. Finally, the selective attachment of F-actin was well characterized with quantifying the number of attached F-actin per unit area in the patterned areas over that in blocked areas. The density of F-actin was estimated at c.a. 2 μm 2 per actin filament molecule so that the distance between one another actin filament is estimated as c.a. 1.41–1.97 μm. The unique properties of F-actin, e.g. well flexibility or electrical conductivity, make it feasible to lay them down and form unidirectional aligned tracks by fluidic flow or electrical field. This may open a possibility for the long-distant movement of myosin-coated beads, offering a novel discipline for the development of micro-biochip in vitro.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.