Abstract

We report selective area growth of large area homogeneous Bernal stacked bilayer epitaxial graphene (BLEG) on 4H-SiC (0001) substrate by electron-beam irradiation. Sublimation of Si occurs by energetic electron irradiations on SiC surface via breaking of Si–C bonds in the localized region, which allows the selective growth of graphene. Raman measurements ensure the formation of homogeneous BLEG with weak compressive strain of −0.08%. The carrier mobility of large area BLEG is ∼5100 cm2 V−1 s−1 with a sheet carrier density of 2.2 × 1013 cm−2. Current-voltage measurements reveal that BLEG on 4H-SiC forms a Schottky junction with an operation at mA level. Our study reveals that the barrier height at the Schottky junction is low (∼0.58 eV) due to the Fermi-level pinning above the Dirac point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.