Abstract

Pesticides and fungicides are extremely useful to hinder the attacks of pests and fungi to secure crops, vegetables, fruits and other plants but due to their endocrine disrupting and carcinogenic risks in humans and animals through their continued addition in water resources they are extremely important to monitor carefully. In this investigation we synthesized silver nanoparticles (AgNPs) via the reducing action of sodium borohydride in the presence of secnidazole (SEC) as capping agent under various optimized parameters such as the concentration of NaBH4, silver nitrate (AgNO3), SEC and pH. These SEC-AgNPs were characterized through various techniques including ultra-violet visible (UV–Vis) spectroscopy, Fourier transform infra-red (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and zeta-potential analysis (ZPA) in order to investigate their diverse properties. As prepared SEC-AgNPs were proved as extremely sensitive for trace level sensing of fungicide carbendazim (CARB) in the range of 0.5–22 µM with limit of detection (LOD) equal to 0.021 µM and R2 value of 0.9964. SEC-AgNPs were tested for CARB sensing under the presence of several pesticides with negligible interference thus verifying its exclusive selectivity for the targeted analyte. This SEC-AgNPs was further applied to find out the concentration of CARB in real samples of tap water and human blood plasma with reference to standard addition method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.