Abstract

AbstractDifferent processes contribute to the loss or transformation of dissolved organic matter (DOM) and change DOM concentration and composition systematically along the inland water continuum. Substantial efforts have been made to estimate the importance of microbial and photochemical degradation for DOM concentration and composition and, to some extent, also DOM losses by flocculation, whereas the significance of DOM adsorption to inorganic surfaces has received less attention. Hence, knowledge on the possible extent of adsorption, its effect on DOM loads and composition and on where along the aquatic continuum it might be important, is currently limited or lacking altogether. Here we experimentally determine DOM adsorption onto mineral particles in freshwater ecosystems covering a water residence time gradient in boreal landscape Sweden. We hypothesized that adsorption would gradually decrease with increasing water residence time but actually found that DOM is highly susceptible to adsorption throughout the aquatic continuum. Mass spectrometry and fluorescence analysis on DOM suggest that freshly produced aquatic DOM is less susceptible to adsorption than more terrestrial material. Moreover, the percentage DOM adsorbed in the experiments greatly exceeds the actual adsorption taking place in boreal inland waters across all studied systems. These results illustrate the potential impact of mineral erosion, for example, as a result of agriculture, mining or forestry practices, on the availability, transport, and composition of organic carbon in inland waters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.