Abstract
This study originally investigated the selective adsorption of cyclic organics in APCPW by LAC, corresponding to the change of the bioavailability. As a product from low rank coal, LAC showed more oxygen (O)-containing groups and mesoporous structure than PAC. Adsorption mechanisms were analyzed by equilibrium isotherms and kinetics models combined with physicochemical properties of adsorbent and adsorbates. The results indicated that selectivity of LAC was dominated by chemical interaction and its mesoporous, and was enhanced by hydrophobicity of adsorbates. In addition, PAC and LAC were applied for the treatment of APCPW. Compared with PAC, LAC adsorption exhibited superior removal efficiency of Tph, TOC and TN at 85.90%, 91.15% and 51.64%, respectively. Furthermore, preferential adsorption of biotoxic and bioresistant cyclic organics by LAC was further proved by GC–MS analysis, resulting in increased bioavailability of APCPW. Specifically, LAC exerted sustained detoxication capacity until 86.50% reduction of TU by D. magna evaluation, and lowered toxicity rank (TU = 4.51, classIII) to T. pyriformis than that after PAC adsorption (TU > 10, ClassIV). Meanwhile, biodegradability was also improved by 9.17% after LAC adsorption. Lastly, LAC would exhibit great economic benefits as an alternative for PAC in subsequent process after anaerobic pretreatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.