Abstract

Cd2+ resistance and bioaccumulation capacity were selected from parental Zygosaccharomyces rouxii (CRZ-0) while maintaining NaCl tolerance using protoplast mutagenesis technology. Ultraviolet-diethyl sulfate (UV-DES) cooperative mutagenesis, followed by preliminary screening and rescreening, was used to select the mutant strain CRZ-9. CRZ-9 grew better than CRZ-0 in YPD medium with 20 or 50mgL-1 of Cd2+. Scanning electron microscopy observations and flow cytometry tests indicated that CRZ-9 was more effective at eliminating reactive oxygen species (ROS) generated by Cd2+, which led to less cellular structural damage and lower lethality. Furthermore, compared with CRZ-0, CRZ-9 exhibited increased potential for application with higher Cd2+ removal ratio, wider working pH range, and lower biomass dosage in Cd2+ bioaccumulation. The mutant strain CRZ-9 possessed improved Cd2+ resistance and bioaccumulation capacity and therefore is a promising strain to remove Cd2+ from wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.