Abstract

These experiments examine the role of vision and step height in the selection of a simple binary choice of movement pattern by human subjects. The subjects selected a heel strike movement pattern (HS) (as used during level surface locomotion) or a toe strike movement pattern (TS) (as used during stair descent). The functional task involved descending a step of adjustable height followed by level surface walking under vision and nonvision conditions. Triceps surae and tibialis anterior electromyographic (EMG) activity, ankle angle position, and vertical force were examined. As step height was increased, there was an indistinct threshold at which subjects switched from landing with a HS movement pattern to a TS movement pattern. The tibialis anterior and triceps surae precontact EMG burst and subsequent ankle movement for HS and TS trials appear to be part of preprogrammed movement patterns, which are presumably of central origin. The particular mixture of voluntary, stereotypic, and reflex actions for any specified movement is based on the intent or functional outcome desired. The switching to the TS movement pattern as step height increased presumably results in the most efficient and stable movement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call