Abstract

Structural learning is characterized by facilitated adaptation following training on a set of sensory perturbations all belonging to the same structure (e.g., ‘visuomotor rotations’). This generalization of learning is a core feature of the motor system and is often studied in the context of interlimb transfer. However, such transfer has only been demonstrated when participants learn to counter a specific perturbation in the sensory feedback of their movements; we determined whether structural learning in one limb generalized to the contralateral limb. We trained 13 participants to counter random visual feedback rotations between +/-90 degrees with the right hand and subsequently tested the left hand on a fixed rotation. The structural training group showed faster adaptation in the left hand in both feedforward and feedback components of reaching compared to 13 participants who trained with veridical reaching, with lower initial reaching error, and straighter, faster, and smoother movements than in the control group. The transfer was ephemeral – benefits were confined to roughly the first 20 trials. The results demonstrate that the motor system can extract invariant properties of seemingly random environments in one limb, and that this information can be accessed by the contralateral limb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.