Abstract

The possibility of using galvanic waste for the synthesis of graphite thermo expanded compounds has been shown. An electrolyte on the basis of a spent nitrate solution of etching copper parts containing cations of various metals in its composition was taken as an example, thereby solving an environmental issue related to the problem of utilization of solutions containing nitric or sulfuric anions in its composition. The processes occurring in the synthesis of thermally expanding graphite compounds on platinum and graphite electrodes in the electrolyte under investigation were studied by the method of potentiodynamic curves. The currents on the potentiodynamic curves before reaching the oxygen evolution potential were due to the oxidation of the surface-functional groups followed by intercalation of the graphite matrix. It was revealed that the potential for oxygen evolution in the electrolyte based on the spent nitric acid solution of etching of copper parts is slightly lower than in 58% HNO3 due to the presence of metal cations in the composition. Free metal cations attract a part of water molecules to form hydrate shells, while copper cations form complexes where H2O molecules are ligands, which makes it difficult to release oxygen. In the electrochemical synthesis of thermally expanding graphite compounds, potentiostatic and galvanostatic modes were applied. A range of potentials of 1.8 - 2.2 V was chosen for performing the synthesis in the potentiostatic mode. Recommendations are given for the application of the galvanostatic mode with the current of anodic treatment of 60 - 140 mA (per 1 g of graphite) for the synthesis of graphite thermo expanding compounds in industrial volumes. The thermo expanded graphite obtained in this manner is characterized by a bulk density of less than 2 g/dm3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call