Abstract

We introduce the concept of a representative value function in robust ordinal regression applied to multiple criteria ranking and choice problems. The proposed method can be seen as a new interactive UTA-like procedure, which extends the UTA GMS and GRIP methods. The preference information supplied by the decision maker (DM) is composed of a partial preorder and intensities of preference on a subset of reference alternatives. Robust ordinal regression builds a set of general additive value functions which are compatible with the preference information, and returns two binary preference relations: necessary and possible. They identify recommendations which are compatible with all or at least one compatible value function, respectively. In this paper, we propose a general framework for selection of a representative value function from among the set of compatibles ones. There are a few targets which build on results of robust ordinal regression, and could be attained by a representative value function. In general, according to the interactively elicited preferences of the DM, the representative value function may emphasize the advantage of some alternatives over the others when all compatible value functions acknowledge this advantage, or reduce the ambiguity in the advantage of some alternatives over the others when some compatible value functions acknowledge an advantage and other ones acknowledge a disadvantage. The basic procedure is refined by few extensions. They enable emphasizing the advantage of alternatives that could be considered as potential best options, accounting for intensities of preference, or obtaining a desired type of the marginal value functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.