Abstract

ABSTRACT Zinc (Zn) deficiency is a major nutritional problem for rice under sodic conditions. Seedlings (35-d old) of 30 rice genotypes were transplanted in pots at pH2 9.8 [diethylene triamine penta acetic acid (DTPA) Zn 1.8 ppm] to identify genotypes tolerant to both sodicity and Zn deficiency. Ten genotypes (group A) showed potential to tolerate both the stresses. Sixteen genotypes (group B) were sensitive to Zn deficiency. However, some of the seedlings of group B genotypes were normal (without Zn deficiency symptoms). Four genotypes (group C) were sensitive to sodicity. Leaves and their leaf sheaths were analyzed at 33 d after transplanting for Ca, Mg, K, and Na. Group A genotypes (CSR-88IR15, CSR-89IR14, IR4630-22-2-5-1-2, and Trichi) had significantly less Na concentrations in their leaves and the leaf sheaths compared to group B genotypes (CSR10, CSR23, CSR-88IR1, 89H1-931098, and IR47538-3B-9-3B-1). The concentration of Na was invariably higher in the leaf sheath than its leaf in both the groups, but reverse was true for Ca, Mg, and K. Zinc deficient plants had relatively higher concentrations of Ca and Mg in their leaves and the leaf sheaths than group A. Concentration of K was somewhat better in group A than group B genotypes. Higher Na/K ratio in group B genotypes compared to group A may be attributed to increased concentrations of Na rather than decreases in K concentrations. Further studies are needed to understand the processes associated with differential uptake of Na and K by Zn deficient plants of group B genotypes resulting in higher Na/K ratio compared to group A genotypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call