Abstract

The current study was conducted to mitigate salt stress on Calendula officinalis L. plants using Streptomyces (Sm) bacteria alone or in combination with potassium nanoparticles (K NPs). Based on the results, morphometric characters, leaf SPAD and relative water content in plants treated with Sm bacteria and K NPs increased compared to the nontreated control under salinity stress. However, leaf ionic leakage, malondialdehyde (MDA) and hydrogen peroxide (H2O2) content decreased considerably in these treated plants. Also, under salt stress, the activity of antioxidant enzymes was higher in Sm bacteria + K NPs -treated plants than in controls. In all plants, endogenous indole acetic acid (IAA) content increased compared to plants grown in non-saline conditions. Inoculated plants reflected a relative increase in IAA by about 28% over the uninoculated plants. The highest amount of abscisic acid (ABA) and putrescine (Put) was related to those plants treated with Sm bacteria + K NPs, which the amounts were 43% and 47% higher than in control plants, respectively. Application of Sm bacteria + K NPs had a helpful outcome on both macronutrients (N-NO- 3, P, K and Mg) and micronutrients (Fe, Zn, and Mn) of vines leaves. In general, the inoculation of Sm bacteria + K NPs application by improving the uptake of nutrients, regulating phytohormones and increasing the antioxidant enzymes activity resulted in salinity tolerance improvement in calendula plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.