Abstract

The ventilatory sensitivity to CO2, in hyperoxia, is increased after an 8-h exposure to hypoxia. The purpose of the present study was to determine whether this increase arises through an increase in peripheral or central chemosensitivity. Ten healthy volunteers each underwent 8-h exposures to 1) isocapnic hypoxia, with end-tidal PO2 (PET(O2)) = 55 Torr and end-tidal PCO2 (PET(CO2)) = eucapnia; 2) poikilocapnic hypoxia, with PET(O2) = 55 Torr and PET(CO2) = uncontrolled; and 3) air-breathing control. The ventilatory response to CO2 was measured before and after each exposure with the use of a multifrequency binary sequence with two levels of PET(CO2): 1.5 and 10 Torr above the normal resting value. PET(O2) was held at 250 Torr. The peripheral (Gp) and the central (Gc) sensitivities were calculated by fitting the ventilatory data to a two-compartment model. There were increases in combined Gp + Gc (26%, P < 0.05), Gp (33%, P < 0.01), and Gc (23%, P = not significant) after exposure to hypoxia. There were no significant differences between isocapnic and poikilocapnic hypoxia. We conclude that sustained hypoxia induces a significant increase in chemosensitivity to CO2 within the peripheral chemoreflex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call