Abstract

Electronic warfare (Polish acronym WRE ‒ walka radioelektroniczna) is a set of militaryactions based on the use of the electromagnetic spectrum and it includes:— reception and identification of electromagnetic emissions,— reducing the effectiveness of the enemy’s electronic devices,— enabling effective use of the spectrum by own forces.The task of the WRE in peacetime is to obtain information about radio-electronic devices, especiallyradars. These tasks are performed by ELINT (Electronic Intelligence) and/or ESM (Electronic WarfareSupport Measures) devices. They operate passively in the 0.5÷18 GHz band, their detection is difficultand the information they provide allows to detect a threat to own forces and to take appropriatecountermeasures. Radar recognition is a complex process that involves the following stages. The firststage: gathering measurements and their grouping into the so-called packets and graphical display ofthe received pulse trains. The measurements are represented by the so-called measurement vectors(descriptors) containing signal parameters, including the TOA (Time of Arrival) pulse with nanosecondaccuracy. The second stage: associating pulse packets with logical sources in order to obtainrepresentative data strings. This stage is signal sorting and deinterleaving. The third stage: estimationof the WS signal vector based on the associated pulse packets. The final stage of data processing is thecomparison of the obtained signal descriptor parameters WS with Database (BD) radar patterns. Thereconnaissance result allows for the assessment of the threat resulting from the operation of this radar.Radar recognition requires precise determination of many parameters of its signal. For pulsed radars,important parameters are the Pulse Repetition Interval (PRI) and the type of PRI modulation. Radarsare characterised by a high complexity of PRI changes. This provides great utility and makes it possibleto distinguish even radar units and changes in their locations. This allows for the detection and fullidentification of objects that use radars (e.g. ships) with the given object completely out of sight; it alsoallows to predict intentions of the target. The basic inter-pulse PRI modulations include: stagger, dwelland switch, jitter or sliding. PRI changes in radar signals may be periodic with long cycles, difficultto identify in cluttered conditions. Unfortunately, the received pulse trains are usually distorted. Thismakes the WS estimation process difficult ‒ especially in automatic mode. PRI analysis has receivedmuch attention in the literature. The methods are computationally complex and have numerouslimitations. This article presents ASWC algorithm (Sequential Cycle Detection Algorithm) of PRIproprietary, with relatively low computational complexity. Examples of test results confirming its higheffectiveness in automatic PRI analysis performed under interference conditions were also presented.Keywords: radars, electronic warfare, radar recognition, ELINT, ESM, pulse descriptor, PRI

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call