Abstract
Electroencephalogram (EEG) based seizure types classification has not been addressed well, compared to seizure detection, which is very important for the diagnosis and prognosis of epileptic patients. The minuscule changes reflected in EEG signals among different seizure types make such tasks more challenging. Therefore, in this work, underlying features in EEG have been explored by decomposing signals into multiple subcomponents which have been further used to generate 2D input images for deep learning (DL) pipeline. The Hilbert vibration decomposition (HVD) has been employed for decomposing the EEG signals by preserving phase information. Next, 2D images have been generated considering the first three subcomponents having high energy by involving continuous wavelet transform and converting them into 2D images for DL inputs. For classification, a hybrid DL pipeline has been constructed by combining the convolution neural network (CNN) followed by long short-term memory (LSTM) for efficient extraction of spatial and time sequence information. Experimental validation has been conducted by classifying five types of seizures and seizure-free, collected from the Temple University EEG dataset (TUH v1.5.2). The proposed method has achieved the highest classification accuracy up to 99% along with an F1-score of 99%. Further analysis shows that the HVD-based decomposition and hybrid DL model can efficiently extract in-depth features while classifying different types of seizures. In a comparative study, the proposed idea demonstrates its superiority by displaying the uppermost performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have