Abstract
As one of the most common neurological diseases in the world, epilepsy seizure is difficult to ignore. Seizure detection is receiving more and more attention from researchers. Feature extraction is one of the key steps in automatic seizure detection. Lots of features have been proposed to detect seizure using EEG signal. However, few works focus on feature fusion. In this paper, deep multi set CCA is explored for seizure detection. Since deep neural network architecture has a great impact on performance of deep multiset CCA, bayesian optimization is employed to search architecture parameters automatically. Preliminary experiments show it is effective for seizure detection using deep multiset CCA and bayesian optimization. Satisfactory seizure classification results are achieved with little manual intervention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.