Abstract

Data for local earthquakes recorded by a network of stations in northeastern United States and adjacent Canada were analyzed to study the seismicity, the relationship between earthquakes and known faults, the state of stress, and crustal and upper mantle velocity structure. In addition, portable seismographs were deployed in the field to study aftershocks. As a result, accurate locations for about 364 local earthquakes (2 ≤ mb ≤ 5) and 22 focal mechanism solutions were determined. A comparison of the spatial distribution of these events (1970–1979) with historical earthquakes (1534–1959) reveals that seismic activity in the northeast is relatively stationary in space: those areas that have had little or no seismicity historically are relatively aseismic today, whereas the historically active areas are also active today. The instrumental locations, historical seismicity, and focal mechanism solutions show an internal consistency that help us distinguish two distinct seismogenic provinces. (1) The Adirondack‐western Quebec province is a northwesterly trending zone of seismic activity, about 200 km wide and at least 500 km long, extending from the SE Adirondacks into western Quebec, Canada. Thrust faulting on planes striking NNW to NW appears to predominate, and the inferred axis of maximum horizontal compression is largely uniform and trends WSW, nearly parallel to the calculated absolute plate motion of North America. Little or no seismicity is found where anorthosite outcrops at the surface. Correlations between gravity anomalies and earthquake locations suggest that seismic activity in this zone is localized to regions of steep NE or SW gradient in Bouguer anomalies. This zone does not appear to extend southeastward to Boston, as proposed by some workers. (2) The Appalachian province is a northeasterly trending zone of seismic activity extending from northern Virginia to New Brunswick, Canada. Highangle reverse or thrust faulting on N to NE trending planes appears to predominate. The western margin of this province, however, appears to be relatively aseismic. We attribute this relative lack of activity to one or more of the following: the presence of igneous activity postdating rifting of Africa from North America, the occurrence of intense metamorphism during the Acadian orogeny which may have annealed preexisting faults, and the predominance of ductile as opposed to brittle deformation in the geologic past. The inferred axis of maximum horizontal compression along the eastern margin of the Appalachians is rather uniform and trends W‐WNW, almost perpendicular to the magnetic lineations offshore. We suggest that this W‐WNW compression reflects the gravitational force arising from horizontal density variations in the oceanic lithosphere as it cools and moves away from spreading centers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call