Abstract

In this study, an improved evaluation of pore pressure using a model based seismic inversion technique has been carried out. Across six wells in the Onshore Niger Delta Basin, post stack seismic volume, angle stack gathers, seismic horizons, check shot, wireline logs, drilling and pressure data were analysed and interpreted. The model based inversion technique was applied to improve the seismic resolution as well as derive acoustic impedance using well velocities along with stacking velocities from velocity analysis of the 3D seismic data. Bowers’ Vp-VES coefficients of 7.43 and 0.77 were used to transform the derived seismic acoustic impedance velocity into seismic pore pressure cube. The seismic acoustic impedance interval velocity reveals much of the geology and resulted to a high resolution seismic pore pressure cube when compared at well location with direct pressure data. The Derived Seismic Pore Pressure (DSPP) also revealed that pore pressure and overpressure can reach or exceed 4000 and 1000psi respectively in the field. The results obtained have demonstrated that seismic acoustic impedance volume can offer high resolution seismic pore pressure cube in both time and space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.