Abstract

Bolted steel connections have been frequently used after Northridge earthquake. Among the concerns regarding the poor performance of weak connections is the ability to effectively and economically rehabilitate steel moment connections in existing buildings. Strengthening of these connections without the need for changing or replacing their components is a problem that has been recently considered by engineers. This study develops and experimentally validates an innovative technique for enhancing the seismic performance of steel beam to column moment connections. The use of haunch as a way to rehabilitate end plate bolted connections with weak end plate or bolts is studied constructing 6 experimental specimens of corner connections under SAC (Structural Engineers Association of California) cyclic loading protocol. The results of the study show that this strengthening method improves the cyclic behavior of the weak connections. Besides, it provides specimens with better performance than that of the reference connection designed according to AISC. The moment capacity, initial rotational stiffness and energy dissipation of the rehabilitated connections are averagely higher than those of the reference connection by 25, 10 and 12 percent respectively. Moreover, the failure potential in the connection is reduced because the plastic hinge is kept away from connection region and is transferred to the haunch end. It should be noted that this strengthening method is more efficient for cyclic behavior of a bolted connections with weak end-plate than a bolted connection with weak bolts, since the moment capacity is more increased.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.