Abstract

Due to the high elevation and huge potential energy of high-level landslides, they are extremely destructive and have prominent kinetic-hazard effects. Studying the kinetic-hazard effects of high-level landslides is very important for landslide risk prevention and control. In this paper, we focus on the high-level landslide that occurred in Xinmo on 24 June 2017. The research is carried out based on a field geological survey, seismic signal analysis, and the discrete element method. Through ensemble empirical mode decomposition (EEMD) and Fourier transformation, it is found that the seismic signals of the Xinmo landslide are mainly located at low frequencies of 0–10 Hz, and the dominant frequency range is 2–8 Hz. In addition, the signal time-frequency analysis and numerical simulation calculation results reveal that the average movement distance of the sliding body was about 2750 m, and the average movement speed was about 22.9 m/s. The movement process can be divided into four main stages: rapid start, impact loading, fragmentation and migration, and scattered accumulation stages. We also provide corresponding suggestions for the zoning of high-level landslide geological hazards.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call