Abstract

On the basis of the continuous and dense GPS observations covering the northern segment of the Xiaojiang fault zone (n-XJFZ) from March 2012 to March 2016, we present the velocity field, spatiotemporal deformation, slip rate and locking depth of the n-XJFZ. The results provide strong support for achieving a better understanding of the deformation behavior of this fault. The heterogeneity of the GPS velocity field and relatively nonuniform distribution of seismicity suggest that the observational area is fragmented. Shear strain has been accumulating with an almost constant azimuth, which is consistent with the trends of the mapped major faults. The 2014 Ms 6.5 Ludian earthquake produced a sudden change in the dilatational strain, which was almost constant prior to the event, and an increase in the shear strain rate. The near-field deformation of the n-XJFZ estimated with the near-field data was larger than expected, revealing that the n-XJFZ is becoming more locked. These results imply that the seismic risk in the study area is currently rising and that, similar to the 2014 Ms 6.5 Ludian earthquake, future earthquakes will possibly occur away from mapped faults.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call