Abstract

It is conventionally assumed in the analysis and design of earth dams that the soil located above the phreatic line, i.e. the uppermost seepage flow line, is completely dry. However, there is often an unsaturated flow of water through an unsaturated zone above this borderline and variation in moisture content in this zone results in variation of matric suction throughout this region. Variation of matric suction, in turn, results in variation of effective stresses in this zone. In this research, the seismic response of earth dams in terms of the displacement and acceleration at the crown of the dam as well as the stress distribution in the dam body is investigated. Taking into account the effect of unsaturated zone, a comparison is made to investigate the effect of conventional simplification in ignoring the dynamic characteristics of the unsaturated zone above the phreatic line and the more complicated analysis which includes the unsaturated zone. A function for the soil-water retention curve (SWRC) was assigned to the soil in the unsaturated zone to determine the variation of matric suction in this zone and analyses were made using finite difference software (FLAC). Results are then compared to the conventional method for homogeneous dams. In these analyzes the soil shear modulus was assumed to vary with the mean effective stress both for saturated and unsaturated zones. Among various results, it was notable that the history of crest x-displacement, and acceleration show higher values in models accounting for the unsaturated region. It was attributed to the considerably lower values of damping ratio in the crest region in the unsaturated models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.