Abstract
Streambanks of alluvial channels are usually composed of loose materials, which are unsaturated in ambient conditions. Unsaturated soils are subject to negative pore water pressures, which cause an apparent cohesion. The latter is the main factor in allowing the stability of near-vertical banks. Even during moderate in-bank flow events, the apparent cohesion can be strongly reduced as the material approaches full saturation; therefore, during the drawdown phase, as the confining pressure of the water in the channel disappears, a bank failure is likely to occur. Channel bed-level lowering along the Sieve River, Central Italy, has caused widespread bank instability. A geomorphological reconnaissance of forms and processes was followed by in situ tests to determine the shear strength of the banks. Interpretation of the tests and a streambank stability analysis were based on concepts of soil mechanics for unsaturated soils, in order to obtain relations between bank angle and height in limit equilibrium conditions. A stability chart was obtained with curves for different apparent cohesion values, and a stability analysis was performed taking into account the effects of flow events. In order to investigate the pore pressure effects, a series of piezo-tensiometers were installed in a streambank of the Sieve River. Data from a 1 year monitoring period show variations in pore water pressure and matric suction as a consequence of rainfall, evapotranspiration, and water stage variations. A planar failure with a tension crack occurred in the upper cohesive part of the bank during December 1996. The safety factor has been expressed as a function of the geometry of the bank and of the shear strength of the material. Safety factor variations through time are therefore shown as a function of seasonal variations in matric suction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.