Abstract

At present, the crude fluid-structure interaction analysis model cannot accurately characterize the interaction mechanism between aqueduct and water under earthquake action. In order to solve this problem, this paper analyzes the seismic response of the double-tank aqueduct under the action of earthquake by using the shaker test and the VOF (Volume of Fluid) method considering the free liquid level from the perspective of fluid-solid bidirectional coupling, explores whether the liquid movement in the double tank is consistent and the shock absorption effect of different water levels on the aqueduct, and analyzes the amplitude of free liquid level sloshing and the change of horizontal dynamic pressure caused by water level change from the generation mechanism of TLD (Liquid tuning dampers). The results show that the liquid movement in the two tanks in the double-channel aqueduct is basically the same under the action of earthquake, and the TLD effect of the liquid gradually increases with the increase of the water level in the aqueduct, and the maximum peak shock absorption rate is 63.4% at the maximum peak and 50.4% in numerical simulation. The shaking amplitude of the liquid is positively correlated with the water level height, and the magnitude of the shaking amplitude also reflects the magnitude of the moving water pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call