Abstract
AbstractThis study proposes a seismic reliability–based water distribution system (WDS) optimal design model that minimizes total cost and maximizes seismic reliability. Here, seismic reliability is defined as the ratio of the available quantity of water to the required demand under stochastic earthquake events. A new evaluation model is used to assess seismic reliability, while a multiobjective harmony search (MOHS) based on a ranking approach is used for optimization. The Anytown network was modified for the demonstration of the proposed method. First, this study performs the sensitivity analysis of MOHS parameter values [i.e., harmony search consideration rate (HMCR) and pitch adjustment rate (PAR)] to identify the best parameter set in a pipe-sizing problem of an Anytown network. Then, Pareto optimal solutions with three different tank configurations are obtained and compared with respect to the final Pareto fronts and the system designs. For the sensitivity analysis, it reveals that higher PAR and lo...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Water Resources Planning and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.