Abstract
Abstract In this paper, a method for seismic random noise detection and suppression using a denoising convolutional neural network (DnCNN) is presented. Thanks to the residual learning and batch normalization, deep learning networks can converge faster, the gradient descent and disappearance due to the increase of network layers are solved, and the residual results can be predicted more accurately. For seismic data, the variance estimation method is useful for obtaining an accurate noise distribution model and statistical parameters that provide a useful assessment of the noise level. With the variance estimation method based on weak texture blocks, a noise distribution model and statistical parameters can be derived with high accuracy, and this method effectively estimates seismic noise levels. The DnCNN networks are trained, and non-Gaussian noise reduction technology is used to achieve blind noise reduction at unknown levels, improving the noise reduction of seismic data. In addition, stratigraphic dip characteristics related to layer structure are used as DnCNN training network constraints to prevent effective signals in seismic data from being corrupted by conventional DnCNN noise reduction methods. Geological features such as faults and fracture-cavities can be effectively protected. Carbonate faults in the Tarim Basin in China are affected by the desert surface and the depth at which reservoirs are buried. The seismic data has a low signal-to-noise ratio, and the effective signals of the reservoir are low resolution. The seismic data can be effectively enhanced with this method for noise reduction in this area, the fracture-cavity is effectively displayed, and the fault features are also highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.