Abstract

In recent research of seismic engineering, the damage of bridge due to vertical motion aroused wide concern. Field evidence, experimental results and numerical simulation analysis suggested that vertical ground motion can significantly impact the seismic performance of reinforced concrete (RC) bridge. In this paper, firstly, a FEM model of a continuous rigid frame bridge in China was established . Then the bridge was analyzed using time-history analysis under strong earthquake . Internal force excluding and including vertical motion are compared.Then, the incremental dynamic analysis (IDA) and fiber model are used to calculated the vertical displacement of the node in the top of pier and the sectional curvature of pier. Computational results show that vertical ground motion can increase the internal force and displacement ,as well as reduce the ductility and moment capacity of piers. It is concluded that vertical motion can't be ignored in structure design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call