Abstract

This paper describes an experimental study of the seismic performance of cantilever-reinforced concrete masonry shear walls. As part of a research project on displacement-based design of masonry structures, 30 cantilever shear-wall specimens, made of fully grouted reinforced concrete masonry, were tested under reversed cyclic loading at the University of Texas at Austin and at Washington State University. Based on test results, the relationship between key design parameters and the nonlinear hysteretic response of the specimens was evaluated. The specimens exhibited predominantly flexural behavior, as intended, and their behavior was generally in good agreement with that reported in previous research work. Specimens constructed with masonry units containing recycled materials behaved similarly to otherwise identical specimens constructed with ordinary units, indicating the structural equivalence of those two types of units. Lap splices in the longitudinal reinforcement caused a reduction in wall performance. Walls with longitudinal reinforcement concentrated at jambs behaved similarly to walls with evenly distributed longitudinal reinforcement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.