Abstract
ABSTRACTThe sparsity of examination of seismic passive earth pressure acting on retaining wall holding soil backfill with full submergence, which is more common in waterfront areas, can be noticed from the literature. In the current study, a closed-form solution to compute the seismic passive earth pressure on nonvertical rigid retaining wall retaining a backfill with full submergence is proposed using the modified pseudo-dynamic approach. A nonlinear rupture surface (logarithmic spiral + straight line) in a submerged backfill of viscoelastic nature has been assumed. The presented modified pseudo-dynamic method overcomes the limitations of the existing pseudo-dynamic method for submerged soils. The proposed methodology has been thoroughly validated with the available literature. The influences of seismic acceleration coefficients, excess pore water pressure ratio, wall inclination, and soil and wall friction angles have been studied. It has been noticed that the consideration of excess pore pressure ratio leads to significant decrease in seismic passive resistance of the soil which in turn lead to extra hydraulic pressure acting on the wall in submerged backfill. There is a 57% decrease in seismic passive earth pressure coefficient as the wall inclination changes from −15° to 15°.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.